439. Molecular Polarisation and Molecular Interaction. Part III.* The Interaction of Ethers, Sulphides, and Phosphines with Polyhalogenated Hydrocarbons.

By A. N. Sharpe and S. Walker.

Following work on the interaction of amines with carbon tetrachloride and other non-polar halogenated hydrocarbons, molecular polarisation and dipole-moment evidence is presented indicating that ethers, organic sulphides, and phosphines can also act as donors to polyhalogenated hydrocarbons resulting in a weak donor-acceptor interaction.

The measured dipole moment of a solute in a non-polar solvent is related to the moment in the vapour phase and to solute-solvent interactions which can be: (i) more or less general or (ii) quite particular. Type (ii), which includes hydrogen bonding between solute and solvent molecules (e.g., aniline in 1,4 -dioxan ${ }^{1}$ ) and donor-acceptor interaction (e.g., iodine in benzene ${ }^{2}$ ), often involves significant redistribution of electrical charge. In the absence of molecular interaction-type (ii)-in a series of non-polar solvents, the apparent moment of a solute usually changes slightly and in a fairly consistent direction with changing dielectric constant of solvent. ${ }^{3}$ This is type (i) interaction.

It follows that, in the absence of type (ii) interactions, if a polar solute is measured in
Table 1.
Dipole moments in benzenc and carbon tetrachloride solutions where no interaction is likely. ${ }^{a}$

| Compound | $\mu_{\mathrm{B}}(\mathrm{D})^{\text {b }}$ | $\mu_{\mathrm{CT}}(\mathrm{D})^{\text {c }}$ | $\mu_{\text {CT }}-\mu_{\text {B }}(\mathrm{D})$ | Compound | $\mu_{\mathrm{B}}(\mathrm{D})^{\boldsymbol{b}}$ | $\mu_{\text {CT }}(\mathrm{D})^{\text {c }}$ | $\mu_{\mathbf{C T}}-\mu_{\mathrm{B}}(\mathrm{D})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n-Propyl iodide | 1.84 | 1.86 | 0.02 | $p$-Chlorobenzyl |  |  |  |
| n-Butyl bromide | 1.98 | 1.98 | $0 \cdot 00$ | chloride | $1 \cdot 71$ | $1 \cdot 72$ | 0.01 |
| t-Butyl chloride | 1.94 | 1.95 | 0.01 | $o$-Nitrotoluene | $3 \cdot 79$ | $3 \cdot 81$ | 0.02 |
| Bromobenzene | 1.53 | 1.51 | -0.02 | 1-Bromo-2-phenyl- |  |  |  |
| Cyanobenzene | 4.02* | $\begin{aligned} & 4 \cdot 03 \dagger \\ & 4 \cdot 05 \ddagger \end{aligned}$ | 0.01 | ethylene | 1.54 | 1.53 | -0.01 |
|  |  |  | 0.03 | Nitromesitylene ... | $3 \cdot 65$ | $3 \cdot 63$ | $-0.02$ |
|  |  |  |  | $p$-Diethoxybenzene | 1.76 | 1.72 | -0.04 |
|  |  |  |  | Nitrobenzene | 3.94 | 3.93 | -0.01 |

[^0]two non-polar solvents of similar dielectric constant, then the resulting moment should be closely similar. This is borne out in Table 1 for a variety of polar solutes in benzene and carbon tetrachloride which have very similar dielectric constants ( $2 \cdot 273$ and $\mathbf{2} \cdot 227$, respectively, at $\mathbf{2 5}^{\circ}$ ). Only sets of values which could be found together in one publication have been used, and although this considerably reduced the number of values which could be quoted, it minimised the probable errors in the small differences.

[^1]The substances listed in Table 1 are mostly halogeno- or nitro-organic compounds, and the values of $\mu_{C T}-\mu_{B}(=\Delta \mu)$ are quite small. We suggest that for simple solutes, with dipoles similar to those in Table 1, a difference between the apparent dipole moments in benzene and carbon tetrachloride solutions greater than 0.04 D is evidence for an interaction between the solute and one, or both, of the solvents.

We have shown previously ${ }^{4}$ that the little-studied interaction between polyhalogenated hydrocarbons and amines can be investigated by dipole-moment or polarisation measurements. The apparent dipole moments of most amines are higher in carbon tetrachloride than in benzene, ${ }^{5}$ and the difference ( $\Delta \mu$ ) gives a measure of the extent of interaction. To indicate the magnitude of the effect a selection of $\Delta \mu$ values for such compounds, in which there are no appreciable steric effects, is given:


The $\mathrm{p} K_{\mathrm{a}}$ value of an amine is considerably influenced by the electron density at the nitrogen atom. Since amines of high $\mathrm{p} K_{\mathrm{a}}$ value tend to have the highest $\Delta \mu$ values, ${ }^{4}$ it is probable that the interaction with polyhalogenated hydrocarbons involves some transference of electron density from the amine, i.e., the amine is donor in a weakly bonded complex.

Ethers, sulphides, and phosphines can also act as donors in the formation of certain co-ordination complexes. The next step was to see whether the dipole moments or total polarisation of some of these compounds in carbon tetrachloride and benzene solutions indicate any interaction with carbon tetrachloride.

## Experimental

Polarisation Measurements and Purification of Solvents.--The heterodyne-beat capacitance meter used to measure dielectric constants, calculation of total polarisation or dipole moments,

Table 2.
Polarisation data at $25^{\circ} \mathrm{C}$.

| $10^{6} w_{2}$ | $\varepsilon_{12}$ | $v_{12}$ | $n_{12}{ }^{2}$ | $10^{6} w_{2}$ | $\varepsilon_{12}$ | $v_{12}$ | $n_{12}{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diphenyl ether in benzene |  |  |  | Diphenyl ether in carbon tetrachloride |  |  |  |
| 639 | $2 \cdot 2728$ | 1-14432 | $2 \cdot 24250$ | 556 | 2.2282 | $0 \cdot 63051$ | $2 \cdot 12445$ |
| 1946 | $2 \cdot 2740$ | $1 \cdot 14401$ | $2 \cdot 24269$ | 1364 | $2 \cdot 2297$ | $0 \cdot 63075$ | $2 \cdot 12489$ |
| 4756 | $2 \cdot 2769$ | 1-14340 | $2 \cdot 24323$ | 3518 | $2 \cdot 2335$ | $0 \cdot 63139$ | $2 \cdot 12614$ |
| 6186 | $2 \cdot 2784$ | $1 \cdot 14310$ | $2 \cdot 24364$ | 3986 | $2 \cdot 2344$ | 0.63151 | $2 \cdot 12632$ |
| 10,060 | $2 \cdot 2823$ | $1 \cdot 14225$ | $2 \cdot 24433$ | 6711 | $2 \cdot 2399$ | $0 \cdot 63230$ | 2-12818 |
| 18,505 | $2 \cdot 2913$ | $1 \cdot 14039$ | $2 \cdot 24619$ | 13,241 | $2 \cdot 2527$ | $0 \cdot 63418$ | $2 \cdot 13180$ |
| 18,558 | $2 \cdot 2913$ | 1-14035 | 2.24619 | 14,879 | 2.2555 | $0 \cdot 63466$ | $2 \cdot 13273$ |
| $\begin{array}{lc} \varepsilon_{12}=2 \cdot 2720+1 \cdot 039 w_{2} ; & v_{12}=1 \cdot 14445-0 \cdot 2209 w_{2} ; \\ n_{12}{ }^{2}=2 \cdot 24230+0 \cdot 209 w_{2} ; & { }_{2} P_{\infty}=80 \cdot 07 \text { c.c.; } \\ R_{\mathrm{D}}=52 \cdot 83 \text { c.c. } ; & \mu=1 \cdot 15 \mathrm{D}\left(1 \cdot 13{ }^{a}\right) . \end{array}$ |  |  |  | $\begin{array}{lrl} \varepsilon_{12}=2.2269+1.934 w_{2} ; & v_{12} & =0.63037+0.2872 w_{2} ; \\ n_{12}{ }^{2}=2 \cdot 12405+0.591 w_{2} ; & { }_{2} P_{\infty}=80 \cdot 18 \text { c.c. } ; \\ R_{\mathrm{D}}=53.74 \text { c.c. } ; & \mu & =1 \cdot 14 \mathrm{D} . \end{array}$ |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Dibutyl ether in benzene |  |  |  | Dibutyl ether in carbon tetrachloride |  |  |  |
| 1826 | $2 \cdot 2744$ | 1.14478 | 2.24257 | 668 | 2.2282 | 0.63081 | $2 \cdot 12381$ |
| 2530 | $2 \cdot 2745$ | $1 \cdot 14489$ | $2 \cdot 24233$ | 1252 | $2 \cdot 2293$ | $0 \cdot 63121$ | 2.12361 |
| 3859 | $2 \cdot 2761$ | $1 \cdot 14512$ | $2 \cdot 24188$ | 1971 | $2 \cdot 23$ | $0 \cdot 63169$ | 2.12337 |
| 5580 | $2 \cdot 2776$ | $1 \cdot 14547$ | $2 \cdot 24119$ | 2745 | $2 \cdot 2320$ | $0 \cdot 63225$ | 2.12314 |
| 6271 | $2 \cdot 2782$ | $1 \cdot 14558$ | $2 \cdot 24092$ | 3683 | $2 \cdot 2339$ | $0 \cdot 63285$ | 2.12267 |
| 8729 | $2 \cdot 2803$ | $1 \cdot 14600$ | $2 \cdot 24002$ | 4207 | $2 \cdot 2350$ | $0 \cdot 63321$ | 2.12250 |
| 8987 | $2 \cdot 2804$ | $1 \cdot 14605$ | $2 \cdot 23996$ | 5384 | 2.2371 | 0.63672 | 2.12203 |
| $\begin{aligned} & \varepsilon_{12}=2 \cdot 2725+0.900 w_{2} ; \\ & n_{12}=2 \cdot 24332-0.380 w_{2} \\ & R_{\mathrm{D}}=40 \cdot 96 \text { c.c. } \end{aligned}$ |  | $\begin{aligned} v_{12} & =1 \cdot 1445+0 \cdot 1766 w_{2} ; \\ { }_{2} P_{\infty} & =73 \cdot 28 \text { c.c. } ; \\ \mu & =1 \cdot 26 \mathrm{D}\left(1 \cdot 22 \mathrm{D}^{a}\right) . \end{aligned}$ |  | $\begin{array}{lrl} \varepsilon_{12}=2.2269+1.914 w_{2} ; & v_{12} & =0.63038+0.6721 w_{2} ; \\ n_{12}=2.12414-0.394 w_{2} ; & { }_{2} P_{\infty} & =75.61 \text { c.c. } ; \\ R_{\mathrm{D}}=40.52 \text { c.c. } ; & \mu & =1.31 \text { D. } \end{array}$ |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

[^2]Table 2. (Continued.)

| $10^{3} w_{2}$ | $\varepsilon_{12}$ | $v_{12}$ | $n_{12}{ }^{2}$ | $10^{6} w_{2}$ | $\varepsilon_{12}$ | $v_{12}$ | $n_{12}{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diethyl ether in benzene |  |  | Diethyl ether in carbon tetrachloride |  |  |  |
| 812 | $2 \cdot 2737$ | 1.14467 | $2 \cdot 24197$ | 369 | $2 \cdot 2290$ | 0.63064 | $2 \cdot 12355$ |
| 1710 | 2.2753 | $1 \cdot 14490$ | $2 \cdot 24152$ | 730 | $2 \cdot 2305$ | $0 \cdot 63095$ | 2-12332 |
| 2307 | 2.2768 | $1 \cdot 14504$ | $2 \cdot 24122$ | 1316 | $2 \cdot 2329$ | $0 \cdot 63137$ | $2 \cdot 12305$ |
| 3408 | 2.2785 | $1 \cdot 14529$ | 2.24074 | 1770 | 2.2345 | $0 \cdot 63167$ | 2.12273 |
| 4934 | 2.2812 | 1-14563 | $2 \cdot 24011$ | 2315 | $2 \cdot 2371$ | $0 \cdot 63211$ | 2.12244 |
| 5654 | 2.2828 | 1.14582 | $2 \cdot 23972$ | 2821 | 2.2388 | $0 \cdot 63249$ | 2-12209 |
| 7005 | $2 \cdot 2849$ | 1-14614 | 2.23909 | 3595 | $2 \cdot 2422$ | 0.63307 | 2.12154 |

$\varepsilon_{12}=2.2721+1.84669 w_{2} ; \quad v_{12}=1.14446+0.2427 w_{2} ; \quad \varepsilon_{12}=2.2275+4.065 w_{2} ; \quad v_{12}=0.63037+0.7518 w_{2} ;$

$\varepsilon_{12}=2.2721+1.84609 w_{2}, \quad v_{12}=1.14446+0.2427 w_{2} ;$
$n_{12}=2.2432-0.460 w_{2} ; \quad{ }_{2} P_{\infty}=56.37$ c.c.;
$R_{\mathrm{D}}=23.63$ с.с.; $\quad \mu=1.27 \mathrm{D}(0.74,1 \cdot 14$, $1 \cdot 27,1 \cdot 27,1 \cdot 22 \mathrm{D}^{\mathrm{a}}$ ).

Diethyl ether + carbon tetrabromide (mole fraction 0.095) + benzene *
$\varepsilon_{12}=2.3457+2.714 w_{2} ; v_{12}=0.88337+0.5016 w_{2} ;$ ${ }_{2} \mathrm{P}_{\infty}=60.01$ c.c.
$n_{12}{ }^{2}=2.12380-0.610 w_{2} ; \quad{ }_{2} P_{\infty}=61.63$ c.c.;


Diethyl ether $+\begin{gathered}\text { carbon tetrabromide (mole fraction } \\ 0.223)\end{gathered}$
Diethyl ether $+\underset{0 \cdot 223)+ \text { benzene. }}{ } \quad$ (mole fraction

| $10^{6} w_{2}$ | $\varepsilon_{12}$ | $n_{12}{ }^{8}$ |
| :---: | :---: | :---: |
| 1044 | 2.4400 | 0.68558 |
| 1797 | 2.4427 | 0.68615 |
| 2264 | 2.4445 | 0.68641 |
| 3073 | 2.4471 | 0.68705 |
| 3926 | 2.4500 | 0.68759 |
| 4803 | 2.4528 | 0.68822 |

$\varepsilon_{12}=2.4362+3.543 w_{2} ; v_{12}=0.68487+0.6968 w_{2}$; ${ }_{2} P_{\infty}=60.57$ c.c.
$10^{6} w_{2}$
Diallyl sulphide in carbon tetrachloride ${ }^{\varepsilon_{12}}{ }^{n_{12}}{ }^{2}$
$\begin{array}{ccc}10^{6} w_{2} & \varepsilon_{12} & v_{12} \\ \text { Diallyl sulphide in carbon tetrachloride }\end{array}$
$\varepsilon_{12}{ }_{2} 2.24204-0.047 \omega_{2} \quad P^{12} \quad 7347 \mathrm{c},{ }_{2}$
${ }_{12}{ }^{2}=24264-0.047 \omega_{2},{ }_{2} P_{\infty}=1347$ c.c.
D $=37 \cdot 16$ c.c.; $\quad \mu=1.33 \mathrm{D}$.

| 708 | $2 \cdot 2292$ | $0 \cdot 63073$ | 2-12504 |
| :---: | :---: | :---: | :---: |
| 1507 | $2 \cdot 2315$ | $0 \cdot 63110$ | 2-12504 |
| 2287 | $2 \cdot 2340$ | $0 \cdot 63148$ | $2 \cdot 12507$ |
| 3053 | $2 \cdot 2366$ | 0.63187 | 2.12516 |
| 3864 | $2 \cdot 2390$ | 0.63228 | 2.12533 |
| 4729 | 2.2421 | 0.63272 | 2.12541 |
| 5486 | $2 \cdot 2447$ | $0 \cdot 63309$ | $2 \cdot 12549$ |

$\varepsilon_{12}=2.2267+3.245 w_{2} ; \quad v_{12}=0.63037+0.4937 w_{2} ;$
$n_{12}{ }^{2}=2 \cdot 12480+0 \cdot 136 w_{2} ; \quad{ }_{2} P_{\infty}=76 \cdot 49$ c.c.;
$R_{\mathrm{D}}=36.73$ с.с.; $\quad \mu=1.39 \mathrm{D}$.
Methyl sulphide in carbon tetrachloride

| en |  |  |  |
| :---: | :---: | :---: | :---: |
| 1766 | 2.2788 | $1 \cdot 14455$ | $2 \cdot 24251$ |
| 3639 | $2 \cdot 2855$ | $1 \cdot 14461$ | $2 \cdot 24215$ |
| 5561 | $2 \cdot 2918$ | 1-14472 | $2 \cdot 24180$ |
| 7689 | $2 \cdot 2992$ | $1 \cdot 14479$ | $2 \cdot 24137$ |
| 8497 | $2 \cdot 3026$ | $1 \cdot 14483$ | $2 \cdot 24121$ |
| 8723 | $2 \cdot 3031$ | $1 \cdot 14483$ | 2.24113 |
| 10,672 | $2 \cdot 3104$ | 1-14495 | $2 \cdot 24086$ |

$\varepsilon_{12}=\mathbf{2 . 2 7 2 5}+\mathbf{3 . 5 2 1} w_{2} ; \quad v_{12}=1.14445+0.0458 w_{2} ;$
$n_{12}{ }^{2}=2.24282-0.187 w_{2} ; \quad{ }_{2} P_{\infty}=63.17$ c.c.;
$R_{\mathrm{J}}=19.45$ c.c.; $\quad \mu=1 \cdot 46 \mathrm{D}\left(1.40 \mathrm{D}{ }^{\boldsymbol{a}}\right)$.

| 799 | 2.2330 | 0.63078 | 2.12299 |
| ---: | ---: | ---: | ---: |
| 1717 | 2.2399 | 0.63127 | 2.12299 |
| 3566 | 2.2531 | 0.63219 | 2.12299 |
| 4635 | 2.2604 | 0.63280 | 2.12297 |
| 5338 | 2.2658 | 0.63314 | 2.12297 |
| 6451 | 2.2741 | 0.63372 | 2.12297 |
| 7959 | 2.2851 | 0.63451 | 2.12302 |

$\varepsilon_{12}=2.2272+7.254 w_{2} ; \quad v_{12}=0.63036+0.5216 w_{2} ;$
$n_{12}=2 \cdot 12299+0.000 w_{2} ; \quad{ }_{2} P_{\infty}=68 \cdot 48$ c.c.;
$R_{\mathrm{D}}=19.49$ с.с.; $\quad \mu=1.55 \mathrm{D}$.

Triphenylphosphine in carbon tetrachloride

| 843 | $2 \cdot 2730$ | $1 \cdot 14427$ | $2 \cdot 24364$ |
| :---: | :---: | :---: | :---: |
| 1253 | $2 \cdot 2739$ | $1 \cdot 14412$ | $2 \cdot 24400$ |
| 2453 | $2 \cdot 2752$ | $1 \cdot 14379$ | $2 \cdot 24433$ |
| 3964 | $2 \cdot 2772$ | 1-14340 | $2 \cdot 24499$ |
| 6502 | $2 \cdot 2808$ | $1 \cdot 14266$ | $2 \cdot 24583$ |
| 11,623 | $2 \cdot 2873$ | 1-14135 | 2-24790 |
| 13,600 | 2.2902 | 1-14084 | 2.24871 |


| 415 | 2.2277 | 0.63046 | $2 \cdot 12495$ |
| ---: | :--- | :--- | :--- |
| 1171 | 2.2299 | 0.63066 | 2.12556 |
| 2081 | 2.2330 | 0.63088 | 2.12643 |
| 2784 | 2.2342 | 0.63105 | 2.12710 |
| 4346 | 2.2385 | 0.63142 | 2.12848 |
| 4529 | 2.2390 | 0.63148 | 2.12868 |
| 6251 | 2.2438 | 0.63189 | 2.13014 |

$\varepsilon_{12}=2.2721+1.315 w_{2} ; \quad v_{12}=1.14445-0.2664 w_{2} ;$
$\begin{aligned} n_{12}{ }^{2} & =2 \cdot 24345+0.379 w_{2} ; & { }_{2} P_{\infty} & =133 \cdot 44 \text { c.c. } ; \\ R_{\mathrm{D}} & =86 \cdot 43 \text { c.c. } ; & \mu & =1.52 \mathrm{D}\left(1 \cdot 45,1 \cdot 39 \mathrm{D}{ }^{a}\right) .\end{aligned}$
$\varepsilon_{12}=2.2267+2.744 w_{2} ; \quad v_{12}=0.63038+0.2401 w_{2}$;
$n_{12}{ }^{2}=2.12460+0.885 w_{2} ; \quad{ }_{2} P_{\infty}=142.44$ c.c.;
a Wesson, "Tables of Electric Dipole Moments," Technology Press, Cambridge, Mass., 1948.

* For these three-component mixtures $w_{2}$ is the weight fraction of diethyl ether and each polarisation measurement was carried out by making up six solutions of diethyl ether (weight fraction range $0.001-0.01$ ) in a solvent mixture composed of a known concentration of halogenated hydrocarbon in benzene.
and the purification of benzene, carbon tetrachloride, ${ }^{4}$ and carbon tetrabromide have been described. ${ }^{5}$ Diphenyl ether was distilled (b. p. $252-253^{\circ} / 755 \mathrm{~mm}$.; lit. $252^{\circ}$ ) and partially frozen twice to give large crystals (m. p. 28.5 ; lit. $\mathbf{2 8}^{\circ}$ ).

Dibutyl and diethyl ethers were shaken with dilute sulphuric acid, sodium hydroxide solution, and water, dried ( $\mathrm{K}_{2} \mathrm{CO}_{3}$ ), and fractionated from sodium; b. p.s were $139 \cdot 5^{\circ} / 750 \mathrm{~mm}$. (lit. $142 \cdot 0^{\circ} / 760 \mathrm{~mm}$.) and $34 \cdot 5^{\circ}$ (lit. $34 \cdot 5^{\circ} / 76 \mathrm{~mm}$.), respectively.

Dimethyl and diallyl sulphides were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and fractionated; b. p.s were $\mathbf{3 7 \cdot 5}{ }^{\circ}$ (lit. $37 \cdot 5^{\circ}$ ) and $141^{\circ}$ (lit. $140^{\circ}$ ), respectively.

Triphenylphosphine was recrystallised from ethanol and dried under vacuum; it had m. p. $79-80^{\circ}$ (lit. $79 \cdot 5^{\circ}$ ).

Results.-These are given in Table 2.

## Discussion

Oxygen Compounds.-Table 3 shows the dipole moments and $\Delta \mu$ values for diphenyl, dibutyl, and diethyl ethers in benzene and carbon tetrachloride solutions. With the exception of diphenyl ether the relative $\Delta \mu$ values can best be explained by a weak interaction between the ethers and carbon tetrachloride.

Table 3.
Dipole moments and $\Delta \mu$ values for ethers.

|  | Ether | $\mu_{B}(\mathrm{~d})$ | $\mu_{\text {CT }}$ (D) | $\Delta \mu$ (D) |
| :---: | :---: | :---: | :---: | :---: |
| Diphenyl |  | $1 \cdot 15$ | $1 \cdot 14$ | -0.01 |
| Dibutyl |  | $1 \cdot 26$ | $1 \cdot 31$ | 0.05 |
| Diethyl |  | 1.27 | $1 \cdot 38$ | $0 \cdot 11$ |

In an interaction of this sort, the ether will act as the electron donor. But diphenyl ether is unlikely to be capable of interacting in this way. The bulky phenyl groups considerably reduce the possibility of close approach between the oxygen atom and carbon tetrachloride molecules, and, in addition, the electron density of the oxygen lone-pair electrons will be reduced by mesomerism with the $\pi$-electron systems of the rings. The expectation of negligible interaction is justified by the very low $\Delta \mu$ value.

There is no reduction in electron density at the oxygen atom by the mesomeric effect in alkyl ethers. The butyl groups of dibutyl ether, however, will still considerably hinder the approach of interacting molecules. In diethyl ether the hindrance is much reduced. The $\Delta \mu$ values, which suggest increasing ability to interact in the order dibutyl $<$ diethyl ether, are consistent with the idea of interaction.

Earp and Glasstone, ${ }^{6}$ studying the molecular polarisation of mixtures of ethers and polyhalogenated hydrocarbons, suggested that the differences between calculated and measured values were due to compound formation. The calculated equilibrium constants $(K)$ for the association of the components for these complexes showed a marked drift with change of concentration if any ratio other than $1: 1$ was assumed for their compositions. Although the actual values of $K$ perhaps ought to be treated with caution, their relative values are very interesting. Thus, the bonding between ethers and chloroform or pentachloroethane (hydrogen-bonding) appeared to be much stronger than with carbon tetrachloride, although interaction was still discernible in this case.

The order dibutyl $>$ diethyl ether obtained by Earp and Glasstone for chloroform is opposite to that obtained by us for carbon tetrachloride. This is not necessarily inconsistent since the hydrogen bonding effect of chloroform, whilst still depending on the electron density at the oxygen atom, is stronger and is less likely to be influenced by steric hindrance.

These workers also showed that carbon tetrabromide interacts very strongly with ethers. This result is similar to that found by us for amines. ${ }^{5}$ The apparent total polarisation of pyridine in mixtures of benzene and carbon tetrabromide rises very rapidly at

[^3]low concentrations of carbon tetrabromide and is non-linear, suggesting that the bonding is quite strong, i.e., a large proportion of the pyridine is complexed.

Figs. 1 and 2 show how the apparent total molar polarisation at infinite dilution of pyridine and diethyl ether (data taken from Table 2), respectively, changes in mixtures of benzene with carbon tetrabromide and carbon tetrachloride. The similarity is at once evident.

Earp and Glasstone ${ }^{6}$ also showed that acetone can interact with polyhalogenated hydrocarbons, and it is interesting to record here some values for the dipole moments of


Mole froction of carbon tetrohalide
Fig. 1. Dependence of ${ }_{2} P_{\infty}$ of pyridine on the mole fraction of (a) $\mathrm{CBr}_{4}$ and (b) $\mathrm{CCl}_{4}$ in mixtures of pyridine + carbon tetrahalide + benzene.


Fig. 2. Dependence of ${ }_{2} P_{\infty}$ of diethyl ether on the mole fraction of (a) $\mathrm{CBr}_{4}$ and (b) $\mathrm{CCl}_{4}$ in mixtures of diethyl ether + carbon tetrahalide + benzene.
esters in benzene and carbon tetrachloride. The $\Delta \mu$ values suggest that interaction may occur between esters and carbon tetrachloride.

Table 4.
Dipole moments and $\Delta \mu$ values of esters in benzene and carbon tetrachloride.*

|  | $\mu_{B}(\mathrm{D})$ | $\mu_{\text {CT }}$ (D) | $\Delta \mu$ (D) |
| :---: | :---: | :---: | :---: |
| Methyl propionate. | 1.69 | 1.74 | 0.05 |
| Ethyl acetate | 1.81 | 1.87 | $0 \cdot 06$ |
| Ethyl benzoate | 1.88 | 1.99 | $0 \cdot 11$ |
| Propyl acetate | 1.78 | 1.91 | 0.13 |

* Values taken from Wesson's " Tables of Electric Dipole Moments."

In an oxygen compound where there is very little steric hindrance and high electron density at the oxygen atom, the interaction is likely to be most pronounced, resulting in a considerable increase in apparent total polarisation. The enormous increase in apparent total polarisation of 4-methylpyridine 1-oxide ( 91.8 c.c.), three times the $R_{\mathrm{D}}$ values for the compound in benzene, fits in very well with the idea of this type of interaction. ${ }^{4}$

Table 5.
Dipole moments and $\Delta \mu$ values of sulphides in benzene and carbon tetrachloride.

|  | $\mu_{\mathrm{B}}(\mathrm{D})$ | $\mu_{\mathrm{CT}}(\mathrm{D})$ | $\Delta \mu(\mathrm{D})$ |
| :--- | :---: | :---: | :---: |
| Diallyl sulphide $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. | 1.33 | 1.39 | 0.06 |
| Dimethyl sulphide................................... | 1.46 | 1.55 | 0.09 |

Sulphur Compounds.-The data are recorded in Table 5. The $\Delta \mu$ values again suggest that interaction occurs and the higher value for dimethyl sulphide is consistent with its lower steric hindrance compared with diallyl sulphide. However, steric hindrance in
both these compounds is relatively small, so that the low $\Delta \mu$ values indicate that interaction is weaker than with ethers or amines.

Phosphorus Compounds.-In view of what has been said about steric hindrance in diphenyl ether, a value of $\Delta \mu=0 \cdot 11 \mathrm{~d}$ for triphenylphosphine seems, at first sight, to be rather high. However, the alkylphosphines-unlike the alkyl ethers-react rapidly with carbon tetrachloride to produce what has been described as a quaternary phosphonium salt. ${ }^{7}$ The interaction in these is, therefore, extremely strong in comparison with those of the alkyl ethers, and it is not surprising that triphenylphosphine-unlike diphenyl etheralso exhibits a tendency to interact.

One of us (A. N. S.) is indebted to the D.S.I.R. for a maintenance grant. We are grateful to Mr. L. P. Priestley, Head of the School of Chemistry, College of Technology, Leicester, where this work was carried out.

School of Chemistry, College of Technology, Leicester.
[Present addresses: (A. N. S.) Unilever Food Research, Colworth House, Sharnbrook.
(S. W.) College of Advanced Technology, Birmingham.]
[Received, October 4th, 1963.]
7 Hantzsch and Hibbert, Ber., 1907, 40, 1508.


[^0]:    a Found in Wessen, "Tables of Electric Dipole Moments," Technology Press, Cambridge, Mass., 1948. The values have not been recalculated by a single method since the small difference would not be affected. ${ }^{b} \mathrm{~B}=$ benzene. ${ }^{c} \mathrm{CT}=$ carbon tetrachloride.

    * At $20^{\circ}$. $\dagger$ At $0^{\circ} . \ddagger$ At $40^{\circ}$.

[^1]:    * Part II, J., 1962, 157.
    ${ }^{1}$ Few and Smith, $J ., 1949,753$.
    ${ }^{2}$ Fairbrother, J., 1948, 1051.
    ${ }^{3}$ Müller, Trans. Faraday Soc., 1934, 30, 729.

[^2]:    ${ }^{4}$ Sharpe and Walker, $J ., 1961,2974$.
    ${ }^{5}$ Sharpe and Walker, J., 1962, 157.

[^3]:    ${ }^{6}$ Earp and Glasstone, $J ., 1935,1709,1720$.

